Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
Clustering cells based on similarities in gene expression is the first step towards identifying cell types in scRNASeq data. Here the authors incorporate biological knowledge into the clustering step to facilitate the biological interpretability of clusters, and subsequent cell type identification.
Guardado en:
Autores principales: | Tian Tian, Jie Zhang, Xiang Lin, Zhi Wei, Hakon Hakonarson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d61bdf78def44fd9d00e5d1ec5fd2c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
por: Jiarui Ding, et al.
Publicado: (2021) -
Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST
por: Zhi-Jie Cao, et al.
Publicado: (2020) -
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
por: Xiangjie Li, et al.
Publicado: (2020) -
Single-cell RNA-seq highlights a specific carcinoembryonic cluster in ovarian cancer
por: Hongyu Zhao, et al.
Publicado: (2021) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Gökcen Eraslan, et al.
Publicado: (2019)