An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing

Abstract Gene targeting is a powerful reverse genetics technique for site-specific genome modification. Intrinsic homologous recombination in the moss Physcomitrella patens permits highly effective gene targeting, a characteristic that makes this organism a valuable model for functional genetics. Fu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ako Eugene Ako, Pierre-François Perroud, Joseph Innocent, Viktor Demko, Odd-Arne Olsen, Wenche Johansen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5d791c27f43f41b2865c04cd62b2a9bd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5d791c27f43f41b2865c04cd62b2a9bd
record_format dspace
spelling oai:doaj.org-article:5d791c27f43f41b2865c04cd62b2a9bd2021-12-02T15:05:54ZAn intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing10.1038/s41598-017-05309-w2045-2322https://doaj.org/article/5d791c27f43f41b2865c04cd62b2a9bd2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05309-whttps://doaj.org/toc/2045-2322Abstract Gene targeting is a powerful reverse genetics technique for site-specific genome modification. Intrinsic homologous recombination in the moss Physcomitrella patens permits highly effective gene targeting, a characteristic that makes this organism a valuable model for functional genetics. Functional characterization of domains located within a multi-domain protein depends on the ability to generate mutants harboring genetic modifications at internal gene positions while maintaining the reading-frames of the flanking exons. In this study, we designed and evaluated different gene targeting constructs for targeted gene manipulation of sequences corresponding to internal domains of the DEFECTIVE KERNEL1 protein in Physcomitrella patens. Our results show that gene targeting-associated mutagenesis of introns can have adverse effects on splicing, corrupting the normal reading frame of the transcript. We show that successful genetic modification of internal sequences of multi-exon genes depends on gene-targeting strategies which insert the selection marker cassette into the 5′ end of the intron and preserve the nucleotide sequence of the targeted intron.Ako Eugene AkoPierre-François PerroudJoseph InnocentViktor DemkoOdd-Arne OlsenWenche JohansenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ako Eugene Ako
Pierre-François Perroud
Joseph Innocent
Viktor Demko
Odd-Arne Olsen
Wenche Johansen
An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing
description Abstract Gene targeting is a powerful reverse genetics technique for site-specific genome modification. Intrinsic homologous recombination in the moss Physcomitrella patens permits highly effective gene targeting, a characteristic that makes this organism a valuable model for functional genetics. Functional characterization of domains located within a multi-domain protein depends on the ability to generate mutants harboring genetic modifications at internal gene positions while maintaining the reading-frames of the flanking exons. In this study, we designed and evaluated different gene targeting constructs for targeted gene manipulation of sequences corresponding to internal domains of the DEFECTIVE KERNEL1 protein in Physcomitrella patens. Our results show that gene targeting-associated mutagenesis of introns can have adverse effects on splicing, corrupting the normal reading frame of the transcript. We show that successful genetic modification of internal sequences of multi-exon genes depends on gene-targeting strategies which insert the selection marker cassette into the 5′ end of the intron and preserve the nucleotide sequence of the targeted intron.
format article
author Ako Eugene Ako
Pierre-François Perroud
Joseph Innocent
Viktor Demko
Odd-Arne Olsen
Wenche Johansen
author_facet Ako Eugene Ako
Pierre-François Perroud
Joseph Innocent
Viktor Demko
Odd-Arne Olsen
Wenche Johansen
author_sort Ako Eugene Ako
title An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing
title_short An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing
title_full An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing
title_fullStr An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing
title_full_unstemmed An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing
title_sort intragenic mutagenesis strategy in physcomitrella patens to preserve intron splicing
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/5d791c27f43f41b2865c04cd62b2a9bd
work_keys_str_mv AT akoeugeneako anintragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT pierrefrancoisperroud anintragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT josephinnocent anintragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT viktordemko anintragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT oddarneolsen anintragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT wenchejohansen anintragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT akoeugeneako intragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT pierrefrancoisperroud intragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT josephinnocent intragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT viktordemko intragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT oddarneolsen intragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
AT wenchejohansen intragenicmutagenesisstrategyinphyscomitrellapatenstopreserveintronsplicing
_version_ 1718388646272303104