Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study
Abstract Responses of different neurons to electric field (EF) are highly variable, which depends on intrinsic properties of cell type. Here we use multi-compartmental biophysical models to investigate how morphologic features affect EF-induced responses in hippocampal CA1 pyramidal neurons. We find...
Saved in:
Main Authors: | Guo-Sheng Yi, Jiang Wang, Bin Deng, Xi-Le Wei |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2017
|
Subjects: | |
Online Access: | https://doaj.org/article/5dd76b59da894fc5b4d93d1a2b4a3641 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons
by: Qian Yang, et al.
Published: (2017) -
Endocannabinoids differentially modulate synaptic plasticity in rat hippocampal CA1 pyramidal neurons.
by: Jian-Yi Xu, et al.
Published: (2010) -
Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons
by: Yu-Ting Lin, et al.
Published: (2017) -
Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output
by: Matt Udakis, et al.
Published: (2020) -
Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum
by: Peter H Chipman, et al.
Published: (2021)