Riemann Hypothesis and Random Walks: The Zeta Case
In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><mat...
Guardado en:
Autor principal: | André LeClair |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
Ejemplares similares
-
The Proof of a Conjecture on the Density of Sets Related to Divisibility Properties of <i>z</i>(<i>n</i>)
por: Eva Trojovská, et al.
Publicado: (2021) -
On Leonardo Pisano Hybrinomials
por: Ferhat Kürüz, et al.
Publicado: (2021) -
Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
por: Necdet Batir, et al.
Publicado: (2021) -
Fractional calculus, zeta functions and Shannon entropy
por: Guariglia Emanuel
Publicado: (2021) -
A formula relating Bell polynomials and Stirling numbers of the first kind
por: Mark Shattuck
Publicado: (2021)