Riemann Hypothesis and Random Walks: The Zeta Case
In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><mat...
Enregistré dans:
Auteur principal: | André LeClair |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e43 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
Documents similaires
-
The Proof of a Conjecture on the Density of Sets Related to Divisibility Properties of <i>z</i>(<i>n</i>)
par: Eva Trojovská, et autres
Publié: (2021) -
On Leonardo Pisano Hybrinomials
par: Ferhat Kürüz, et autres
Publié: (2021) -
Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
par: Necdet Batir, et autres
Publié: (2021) -
Fractional calculus, zeta functions and Shannon entropy
par: Guariglia Emanuel
Publié: (2021) -
A formula relating Bell polynomials and Stirling numbers of the first kind
par: Mark Shattuck
Publié: (2021)