A machine learning workflow for raw food spectroscopic classification in a future industry
Abstract Over the years, technology has changed the way we produce and have access to our food through the development of applications, robotics, data analysis, and processing techniques. The implementation of these approaches by the food industry ensure quality and affordability, reducing at the sa...
Guardado en:
Autores principales: | Panagiotis Tsakanikas, Apostolos Karnavas, Efstathios Z. Panagou, George-John Nychas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e30514efc6247cab929d114789321c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Microbiological Quality Assessment of Chicken Thigh Fillets Using Spectroscopic Sensors and Multivariate Data Analysis
por: Evgenia D. Spyrelli, et al.
Publicado: (2021) -
DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels
por: James P Bohnslav, et al.
Publicado: (2021) -
Semantic Description of Explainable Machine Learning Workflows for Improving Trust
por: Patricia Inoue Nakagawa, et al.
Publicado: (2021) - Foods and raw materials
-
High accuracy human activity recognition using machine learning and wearable devices’ raw signals
por: Antonios Papaleonidas, et al.
Publicado: (2021)