Improving formaldehyde consumption drives methanol assimilation in engineered E. coli

Engineering E. coli for metabolization of methanol to produce fuels and chemicals has not been fully achieved. Here, the authors combine metabolic engineering and chemical inhibition to improve methanol assimilation and distinguish the role of kinetics and thermodynamics under various culture condit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benjamin M. Woolston, Jason R. King, Michael Reiter, Bob Van Hove, Gregory Stephanopoulos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/60acd311edfb421fb3ff1741090fb9a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:60acd311edfb421fb3ff1741090fb9a0
record_format dspace
spelling oai:doaj.org-article:60acd311edfb421fb3ff1741090fb9a02021-12-02T15:34:26ZImproving formaldehyde consumption drives methanol assimilation in engineered E. coli10.1038/s41467-018-04795-42041-1723https://doaj.org/article/60acd311edfb421fb3ff1741090fb9a02018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04795-4https://doaj.org/toc/2041-1723Engineering E. coli for metabolization of methanol to produce fuels and chemicals has not been fully achieved. Here, the authors combine metabolic engineering and chemical inhibition to improve methanol assimilation and distinguish the role of kinetics and thermodynamics under various culture conditions.Benjamin M. WoolstonJason R. KingMichael ReiterBob Van HoveGregory StephanopoulosNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Benjamin M. Woolston
Jason R. King
Michael Reiter
Bob Van Hove
Gregory Stephanopoulos
Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
description Engineering E. coli for metabolization of methanol to produce fuels and chemicals has not been fully achieved. Here, the authors combine metabolic engineering and chemical inhibition to improve methanol assimilation and distinguish the role of kinetics and thermodynamics under various culture conditions.
format article
author Benjamin M. Woolston
Jason R. King
Michael Reiter
Bob Van Hove
Gregory Stephanopoulos
author_facet Benjamin M. Woolston
Jason R. King
Michael Reiter
Bob Van Hove
Gregory Stephanopoulos
author_sort Benjamin M. Woolston
title Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
title_short Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
title_full Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
title_fullStr Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
title_full_unstemmed Improving formaldehyde consumption drives methanol assimilation in engineered E. coli
title_sort improving formaldehyde consumption drives methanol assimilation in engineered e. coli
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/60acd311edfb421fb3ff1741090fb9a0
work_keys_str_mv AT benjaminmwoolston improvingformaldehydeconsumptiondrivesmethanolassimilationinengineeredecoli
AT jasonrking improvingformaldehydeconsumptiondrivesmethanolassimilationinengineeredecoli
AT michaelreiter improvingformaldehydeconsumptiondrivesmethanolassimilationinengineeredecoli
AT bobvanhove improvingformaldehydeconsumptiondrivesmethanolassimilationinengineeredecoli
AT gregorystephanopoulos improvingformaldehydeconsumptiondrivesmethanolassimilationinengineeredecoli
_version_ 1718386839350411264