Lie symmetry analysis and invariant solutions of 3D Euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates
Abstract Through the Lie symmetry analysis method, the axisymmetric, incompressible, and inviscid fluid is studied. The governing equations that describe the flow are the Euler equations. Under intensive observation, these equations do not have a certain solution localized in all directions ( r , t...
Guardado en:
Autores principales: | R. Sadat, Praveen Agarwal, R. Saleh, Mohamed R. Ali |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/619a72f8b5a9471f8567c9bfc045536f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lie symmetries of Benjamin-Ono equation
por: Weidong Zhao, et al.
Publicado: (2021) -
Lie symmetry analysis and traveling wave solutions of equal width wave equation
por: Chauhan,Antim, et al.
Publicado: (2020) -
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
por: María S. Bruzón, et al.
Publicado: (2021) -
Spectral solution to a problem on the axisymmetric nonlinear deformation of a cylindrical membrane shell due to pressure and edges convergence
por: Vitalii Myntiuk
Publicado: (2021) -
On topological conjugacy of left invariant flows on semisimple and affine Lie groups
por: Kawan,Christoph, et al.
Publicado: (2011)