Lie symmetry analysis and invariant solutions of 3D Euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates
Abstract Through the Lie symmetry analysis method, the axisymmetric, incompressible, and inviscid fluid is studied. The governing equations that describe the flow are the Euler equations. Under intensive observation, these equations do not have a certain solution localized in all directions ( r , t...
Enregistré dans:
Auteurs principaux: | R. Sadat, Praveen Agarwal, R. Saleh, Mohamed R. Ali |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/619a72f8b5a9471f8567c9bfc045536f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Lie symmetries of Benjamin-Ono equation
par: Weidong Zhao, et autres
Publié: (2021) -
Lie symmetry analysis and traveling wave solutions of equal width wave equation
par: Chauhan,Antim, et autres
Publié: (2020) -
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
par: María S. Bruzón, et autres
Publié: (2021) -
Spectral solution to a problem on the axisymmetric nonlinear deformation of a cylindrical membrane shell due to pressure and edges convergence
par: Vitalii Myntiuk
Publié: (2021) -
On topological conjugacy of left invariant flows on semisimple and affine Lie groups
par: Kawan,Christoph, et autres
Publié: (2011)