Development and validation of FootNet; a new kinematic algorithm to improve foot-strike and toe-off detection in treadmill running.
The accurate detection of foot-strike and toe-off is often critical in the assessment of running biomechanics. The gold standard method for step event detection requires force data which are not always available. Although kinematics-based algorithms can also be used, their accuracy and generalisabil...
Enregistré dans:
Auteurs principaux: | Adrian Rivadulla, Xi Chen, Gillian Weir, Dario Cazzola, Grant Trewartha, Joseph Hamill, Ezio Preatoni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/61febc7a20454dbb940e2e12fbb5e658 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Differences in Muscle Activities and Kinematics between Forefoot Strike and Rearfoot Strike in the Lower Limb during 180° Turns
par: Naruto Yoshida, et autres
Publié: (2021) -
Design of 3D printable prosthetic foot to implement nonlinear stiffness behavior of human toe joint based on finite element analysis
par: Hui-Jin Um, et autres
Publié: (2021) -
Effects of treadmill running with different intensity on rat subchondral bone
par: Zhe Li, et autres
Publié: (2017) -
Comparison of Decision Tree and Long Short-Term Memory Approaches for Automated Foot Strike Detection in Lower Extremity Amputee Populations
par: Pascale Juneau, et autres
Publié: (2021) -
Insights into extrinsic foot muscle activation during a 75 min run using T2 mapping
par: Grischa Bratke, et autres
Publié: (2021)