Weakly supervised temporal model for prediction of breast cancer distant recurrence
Abstract Efficient prediction of cancer recurrence in advance may help to recruit high risk breast cancer patients for clinical trial on-time and can guide a proper treatment plan. Several machine learning approaches have been developed for recurrence prediction in previous studies, but most of them...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/621d9a9af23c4bb7b2dde427d5dfbe39 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|