Weakly supervised temporal model for prediction of breast cancer distant recurrence
Abstract Efficient prediction of cancer recurrence in advance may help to recruit high risk breast cancer patients for clinical trial on-time and can guide a proper treatment plan. Several machine learning approaches have been developed for recurrence prediction in previous studies, but most of them...
Enregistré dans:
Auteurs principaux: | Josh Sanyal, Amara Tariq, Allison W. Kurian, Daniel Rubin, Imon Banerjee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/621d9a9af23c4bb7b2dde427d5dfbe39 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
par: Khaled Saab, et autres
Publié: (2020) -
AAWS-Net: Anatomy-aware weakly-supervised learning network for breast mass segmentation.
par: Yeheng Sun, et autres
Publié: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
par: Fahdi Kanavati, et autres
Publié: (2021) -
Methylation-to-Expression Feature Models of Breast Cancer Accurately Predict Overall Survival, Distant-Recurrence Free Survival, and Pathologic Complete Response in Multiple Cohorts
par: Jeffrey A. Thompson, et autres
Publié: (2018) -
Factors affecting local recurrence and distant metastases of invasive breast cancer after breast-conserving surgery in Chiang Mai University Hospital
par: Ditsatham C, et autres
Publié: (2016)