Weakly supervised temporal model for prediction of breast cancer distant recurrence
Abstract Efficient prediction of cancer recurrence in advance may help to recruit high risk breast cancer patients for clinical trial on-time and can guide a proper treatment plan. Several machine learning approaches have been developed for recurrence prediction in previous studies, but most of them...
Guardado en:
Autores principales: | Josh Sanyal, Amara Tariq, Allison W. Kurian, Daniel Rubin, Imon Banerjee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/621d9a9af23c4bb7b2dde427d5dfbe39 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Khaled Saab, et al.
Publicado: (2020) -
AAWS-Net: Anatomy-aware weakly-supervised learning network for breast mass segmentation.
por: Yeheng Sun, et al.
Publicado: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Fahdi Kanavati, et al.
Publicado: (2021) -
Methylation-to-Expression Feature Models of Breast Cancer Accurately Predict Overall Survival, Distant-Recurrence Free Survival, and Pathologic Complete Response in Multiple Cohorts
por: Jeffrey A. Thompson, et al.
Publicado: (2018) -
Factors affecting local recurrence and distant metastases of invasive breast cancer after breast-conserving surgery in Chiang Mai University Hospital
por: Ditsatham C, et al.
Publicado: (2016)