Machine learning based energy-free structure predictions of molecules, transition states, and solids
Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|