Machine learning based energy-free structure predictions of molecules, transition states, and solids

Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.

Guardado en:
Detalles Bibliográficos
Autores principales: Dominik Lemm, Guido Falk von Rudorff, O. Anatole von Lilienfeld
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:63dbdfe92c2f4710af3a11c94b9cdfc4
record_format dspace
spelling oai:doaj.org-article:63dbdfe92c2f4710af3a11c94b9cdfc42021-12-02T17:55:05ZMachine learning based energy-free structure predictions of molecules, transition states, and solids10.1038/s41467-021-24525-72041-1723https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc42021-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24525-7https://doaj.org/toc/2041-1723Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.Dominik LemmGuido Falk von RudorffO. Anatole von LilienfeldNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dominik Lemm
Guido Falk von Rudorff
O. Anatole von Lilienfeld
Machine learning based energy-free structure predictions of molecules, transition states, and solids
description Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.
format article
author Dominik Lemm
Guido Falk von Rudorff
O. Anatole von Lilienfeld
author_facet Dominik Lemm
Guido Falk von Rudorff
O. Anatole von Lilienfeld
author_sort Dominik Lemm
title Machine learning based energy-free structure predictions of molecules, transition states, and solids
title_short Machine learning based energy-free structure predictions of molecules, transition states, and solids
title_full Machine learning based energy-free structure predictions of molecules, transition states, and solids
title_fullStr Machine learning based energy-free structure predictions of molecules, transition states, and solids
title_full_unstemmed Machine learning based energy-free structure predictions of molecules, transition states, and solids
title_sort machine learning based energy-free structure predictions of molecules, transition states, and solids
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc4
work_keys_str_mv AT dominiklemm machinelearningbasedenergyfreestructurepredictionsofmoleculestransitionstatesandsolids
AT guidofalkvonrudorff machinelearningbasedenergyfreestructurepredictionsofmoleculestransitionstatesandsolids
AT oanatolevonlilienfeld machinelearningbasedenergyfreestructurepredictionsofmoleculestransitionstatesandsolids
_version_ 1718379109858410496