Machine learning based energy-free structure predictions of molecules, transition states, and solids
Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.
Enregistré dans:
Auteurs principaux: | Dominik Lemm, Guido Falk von Rudorff, O. Anatole von Lilienfeld |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Retrospective on a decade of machine learning for chemical discovery
par: O. Anatole von Lilienfeld, et autres
Publié: (2020) -
Glass transition temperature prediction of disordered molecular solids
par: Kun-Han Lin, et autres
Publié: (2021) -
Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model
par: Amin Alibakhshi, et autres
Publié: (2021) -
Machine learned features from density of states for accurate adsorption energy prediction
par: Victor Fung, et autres
Publié: (2021) -
Energy-free machine learning force field for aluminum
par: Ivan Kruglov, et autres
Publié: (2017)