Machine learning based energy-free structure predictions of molecules, transition states, and solids
Accurate computational prediction of atomistic structure with traditional methods is challenging. The authors report a kernel-based machine learning model capable of reconstructing 3D atomic coordinates from predicted interatomic distances across a variety of system classes.
Guardado en:
Autores principales: | Dominik Lemm, Guido Falk von Rudorff, O. Anatole von Lilienfeld |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63dbdfe92c2f4710af3a11c94b9cdfc4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Retrospective on a decade of machine learning for chemical discovery
por: O. Anatole von Lilienfeld, et al.
Publicado: (2020) -
Glass transition temperature prediction of disordered molecular solids
por: Kun-Han Lin, et al.
Publicado: (2021) -
Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model
por: Amin Alibakhshi, et al.
Publicado: (2021) -
Machine learned features from density of states for accurate adsorption energy prediction
por: Victor Fung, et al.
Publicado: (2021) -
Energy-free machine learning force field for aluminum
por: Ivan Kruglov, et al.
Publicado: (2017)