Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment
The phytogenous alkaloid berberine (BBR) has become a potential drug for the treatment of diabetes, hyperlipidemia, and cancer. However, its therapeutic potential is limited because ofpoor intestinal absorption due to its efflux by the <i>P</i>-gp expressed in the intestinal lumen. There...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64cd336841514d73afa1fff816bbab57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:64cd336841514d73afa1fff816bbab57 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:64cd336841514d73afa1fff816bbab572021-11-11T18:48:35ZDevelopment of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment10.3390/polym132138332073-4360https://doaj.org/article/64cd336841514d73afa1fff816bbab572021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3833https://doaj.org/toc/2073-4360The phytogenous alkaloid berberine (BBR) has become a potential drug for the treatment of diabetes, hyperlipidemia, and cancer. However, its therapeutic potential is limited because ofpoor intestinal absorption due to its efflux by the <i>P</i>-gp expressed in the intestinal lumen. Therefore, we aimed to design and fabricate a nanoparticulate system for delivery of BBR employing naturally derived biodegradable and biocompatible polymers, mainly chitosan and alginate, to enhance the oral bioavailability of BBR. A chitosan-alginate nanoparticle system loaded with BBR (BNPs) was formulated by ionic gelation method and was optimized by employing a three-factor, three-level Box-Behnken statistical design. BNPs were characterized for various physicochemical properties, ex vivo, and in vivo evaluations. The optimized BNPs were found to be 202.2 ± 4.9 nm in size, with 0.236 ± 0.02 of polydispersity index, zeta potential −14.8 ± 1.1 mV, and entrapment efficiency of 85.69 ± 2.6%. BNPs showed amorphous nature with no prominent peak in differential scanning calorimetry (DSC) investigation. Similarly, fourier-transform infrared spectroscopy (FTIR) studies did not reveal any interaction between BBR and excipients used. The drug release followed Higuchi kinetics, since these plots demonstrated the highest linearity (R<sup>2</sup> = 0.9636), and the mechanism of release was determined to be anomalous or non-Fickian in nature. An ex-vivo gut permeation study showed that BNPs were better internalized into the cells and more highly permeated through the intestine. Furthermore, in vivo pharmacokinetic analysis in female Wistar rats showed a 4.10−fold increase in the oral bioavailability of BBR from BNPs as compared to BBR suspension. With these findings, we have gained new insight into the effective delivery of poorly soluble and permeable drugs via a chitosan-alginate nanoparticle system to improve the therapeutic performance of an oral nanomedicine.Kanchan KohliAli MujtabaRozina MalikSaima AminMd Sarfaraz AlamAbuzer AliMd. Abul BarkatMohammad Javed AnsariMDPI AGarticleberberinealginatechitosannanoparticlespharmacokinetic studyOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3833, p 3833 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
berberine alginate chitosan nanoparticles pharmacokinetic study Organic chemistry QD241-441 |
spellingShingle |
berberine alginate chitosan nanoparticles pharmacokinetic study Organic chemistry QD241-441 Kanchan Kohli Ali Mujtaba Rozina Malik Saima Amin Md Sarfaraz Alam Abuzer Ali Md. Abul Barkat Mohammad Javed Ansari Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment |
description |
The phytogenous alkaloid berberine (BBR) has become a potential drug for the treatment of diabetes, hyperlipidemia, and cancer. However, its therapeutic potential is limited because ofpoor intestinal absorption due to its efflux by the <i>P</i>-gp expressed in the intestinal lumen. Therefore, we aimed to design and fabricate a nanoparticulate system for delivery of BBR employing naturally derived biodegradable and biocompatible polymers, mainly chitosan and alginate, to enhance the oral bioavailability of BBR. A chitosan-alginate nanoparticle system loaded with BBR (BNPs) was formulated by ionic gelation method and was optimized by employing a three-factor, three-level Box-Behnken statistical design. BNPs were characterized for various physicochemical properties, ex vivo, and in vivo evaluations. The optimized BNPs were found to be 202.2 ± 4.9 nm in size, with 0.236 ± 0.02 of polydispersity index, zeta potential −14.8 ± 1.1 mV, and entrapment efficiency of 85.69 ± 2.6%. BNPs showed amorphous nature with no prominent peak in differential scanning calorimetry (DSC) investigation. Similarly, fourier-transform infrared spectroscopy (FTIR) studies did not reveal any interaction between BBR and excipients used. The drug release followed Higuchi kinetics, since these plots demonstrated the highest linearity (R<sup>2</sup> = 0.9636), and the mechanism of release was determined to be anomalous or non-Fickian in nature. An ex-vivo gut permeation study showed that BNPs were better internalized into the cells and more highly permeated through the intestine. Furthermore, in vivo pharmacokinetic analysis in female Wistar rats showed a 4.10−fold increase in the oral bioavailability of BBR from BNPs as compared to BBR suspension. With these findings, we have gained new insight into the effective delivery of poorly soluble and permeable drugs via a chitosan-alginate nanoparticle system to improve the therapeutic performance of an oral nanomedicine. |
format |
article |
author |
Kanchan Kohli Ali Mujtaba Rozina Malik Saima Amin Md Sarfaraz Alam Abuzer Ali Md. Abul Barkat Mohammad Javed Ansari |
author_facet |
Kanchan Kohli Ali Mujtaba Rozina Malik Saima Amin Md Sarfaraz Alam Abuzer Ali Md. Abul Barkat Mohammad Javed Ansari |
author_sort |
Kanchan Kohli |
title |
Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment |
title_short |
Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment |
title_full |
Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment |
title_fullStr |
Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment |
title_full_unstemmed |
Development of Natural Polysaccharide–Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment |
title_sort |
development of natural polysaccharide–based nanoparticles of berberine to enhance oral bioavailability: formulation, optimization, ex vivo, and in vivo assessment |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/64cd336841514d73afa1fff816bbab57 |
work_keys_str_mv |
AT kanchankohli developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT alimujtaba developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT rozinamalik developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT saimaamin developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT mdsarfarazalam developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT abuzerali developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT mdabulbarkat developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment AT mohammadjavedansari developmentofnaturalpolysaccharidebasednanoparticlesofberberinetoenhanceoralbioavailabilityformulationoptimizationexvivoandinvivoassessment |
_version_ |
1718431705724878848 |