GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation
Grouping T-cell receptors (TCRs) by sequence similarity could lead to new immunological insights. Here, the authors propose a tool that allows the rapid clustering of millions of TCR sequences, identifying TCRs potentially associated with the response to cancer, infectious and autoimmune diseases.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6567862dd2b246dca27592acd4fee3c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6567862dd2b246dca27592acd4fee3c0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6567862dd2b246dca27592acd4fee3c02021-12-02T16:35:42ZGIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation10.1038/s41467-021-25006-72041-1723https://doaj.org/article/6567862dd2b246dca27592acd4fee3c02021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25006-7https://doaj.org/toc/2041-1723Grouping T-cell receptors (TCRs) by sequence similarity could lead to new immunological insights. Here, the authors propose a tool that allows the rapid clustering of millions of TCR sequences, identifying TCRs potentially associated with the response to cancer, infectious and autoimmune diseases.Hongyi ZhangXiaowei ZhanBo LiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Hongyi Zhang Xiaowei Zhan Bo Li GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation |
description |
Grouping T-cell receptors (TCRs) by sequence similarity could lead to new immunological insights. Here, the authors propose a tool that allows the rapid clustering of millions of TCR sequences, identifying TCRs potentially associated with the response to cancer, infectious and autoimmune diseases. |
format |
article |
author |
Hongyi Zhang Xiaowei Zhan Bo Li |
author_facet |
Hongyi Zhang Xiaowei Zhan Bo Li |
author_sort |
Hongyi Zhang |
title |
GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation |
title_short |
GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation |
title_full |
GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation |
title_fullStr |
GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation |
title_full_unstemmed |
GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation |
title_sort |
giana allows computationally-efficient tcr clustering and multi-disease repertoire classification by isometric transformation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6567862dd2b246dca27592acd4fee3c0 |
work_keys_str_mv |
AT hongyizhang gianaallowscomputationallyefficienttcrclusteringandmultidiseaserepertoireclassificationbyisometrictransformation AT xiaoweizhan gianaallowscomputationallyefficienttcrclusteringandmultidiseaserepertoireclassificationbyisometrictransformation AT boli gianaallowscomputationallyefficienttcrclusteringandmultidiseaserepertoireclassificationbyisometrictransformation |
_version_ |
1718383694111047680 |