GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation
Grouping T-cell receptors (TCRs) by sequence similarity could lead to new immunological insights. Here, the authors propose a tool that allows the rapid clustering of millions of TCR sequences, identifying TCRs potentially associated with the response to cancer, infectious and autoimmune diseases.
Guardado en:
Autores principales: | Hongyi Zhang, Xiaowei Zhan, Bo Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6567862dd2b246dca27592acd4fee3c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation
por: Hongyi Zhang, et al.
Publicado: (2021) -
The TCR repertoire of α-synuclein-specific T cells in Parkinson’s disease is surprisingly diverse
por: Akul Singhania, et al.
Publicado: (2021) -
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2
por: Kanako Shimizu, et al.
Publicado: (2021) -
MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella Paratyphi A
por: Lauren J. Howson, et al.
Publicado: (2018)