Induced Matchings and the v-Number of Graded Ideals

We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Gonzalo Grisalde, Enrique Reyes, Rafael H. Villarreal
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i>, the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is very well-covered, or <i>G</i> has a simplicial partition, or <i>G</i> is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a lower bound for the regularity of the edge ring of <i>G</i>. We classify when the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>W</mi><mn>2</mn></msub></semantics></math></inline-formula>-graphs.