Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore
Chromosomes bind microtubules (MT) from opposite spindle poles and the generated tension stabilizes kinetochore-MT attachments. Here the authors measure kinetochore forces by engineering two force sensors and propose that kinetochore fibers exert hundreds of pNs of force to bioriented kinetochores.
Guardado en:
Autores principales: | Anna A. Ye, Stuart Cane, Thomas J. Maresca |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65caf202ae7448c48eaf1423297ed30a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aurora A-dependent CENP-A phosphorylation at inner centromeres protects bioriented chromosomes against cohesion fatigue
por: Grégory Eot-Houllier, et al.
Publicado: (2018) -
PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling
por: Owen Addis Jones, et al.
Publicado: (2019) -
SUMOylated NKAP is essential for chromosome alignment by anchoring CENP-E to kinetochores
por: Teng Li, et al.
Publicado: (2016) -
LUBAC controls chromosome alignment by targeting CENP-E to attached kinetochores
por: Min Wu, et al.
Publicado: (2019) -
Counteraction between Astrin-PP1 and Cyclin-B-CDK1 pathways protects chromosome-microtubule attachments independent of biorientation
por: Xinhong Song, et al.
Publicado: (2021)