Deep learning connects DNA traces to transcription to reveal predictive features beyond enhancer–promoter contact
Recent advances in super-resolution microscopy have made it possible to measure chromatin 3D structure and transcription in thousands of single cells. Here, authors present a deep learning-based approach to characterise how chromatin structure relates to transcriptional state of individual cells and...
Guardado en:
Autores principales: | Aparna R. Rajpurkar, Leslie J. Mateo, Sedona E. Murphy, Alistair N. Boettiger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6709defa5d6e4be39868c3cea25d7942 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Features of COVID-19 applications and their impact on contact tracing: results of preliminary review
por: Riikka Vuokko, et al.
Publicado: (2021) -
On limits of contact tracing in epidemic control.
por: Tomasz Piasecki, et al.
Publicado: (2021) -
The impact of contact tracing in clustered populations.
por: Thomas House, et al.
Publicado: (2010) -
Contact Tracing: Ensuring Privacy and Security
por: Daan Storm van Leeuwen, et al.
Publicado: (2021) -
Internet of Things Based Contact Tracing Systems
por: Peng Hu, et al.
Publicado: (2021)