Deconvoluting kernel density estimation and regression for locally differentially private data

Abstract Local differential privacy has become the gold-standard of privacy literature for gathering or releasing sensitive individual data points in a privacy-preserving manner. However, locally differential data can twist the probability density of the data because of the additive noise used to en...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Farhad Farokhi
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/673d692598a3489a96ad65da8d9b8a30
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!