Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures

Abstract We are now in an era of molecular medicine, where specific DNA alterations can be used to identify patients who will respond to specific drugs. However, there are only a handful of clinically used predictive biomarkers in oncology. Herein, we describe an approach utilizing in vitro DNA and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicholas R. Rydzewski, Erik Peterson, Joshua M. Lang, Menggang Yu, S. Laura Chang, Martin Sjöström, Hamza Bakhtiar, Gefei Song, Kyle T. Helzer, Matthew L. Bootsma, William S. Chen, Raunak M. Shrestha, Meng Zhang, David A. Quigley, Rahul Aggarwal, Eric J. Small, Daniel R. Wahl, Felix Y. Feng, Shuang G. Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Acceso en línea:https://doaj.org/article/683460200e2546bd8518fb156fad7efa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:683460200e2546bd8518fb156fad7efa
record_format dspace
spelling oai:doaj.org-article:683460200e2546bd8518fb156fad7efa2021-12-02T15:15:24ZPredicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures10.1038/s41525-021-00239-z2056-7944https://doaj.org/article/683460200e2546bd8518fb156fad7efa2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41525-021-00239-zhttps://doaj.org/toc/2056-7944Abstract We are now in an era of molecular medicine, where specific DNA alterations can be used to identify patients who will respond to specific drugs. However, there are only a handful of clinically used predictive biomarkers in oncology. Herein, we describe an approach utilizing in vitro DNA and RNA sequencing and drug response data to create TreAtment Response Generalized Elastic-neT Signatures (TARGETS). We trained TARGETS drug response models using Elastic-Net regression in the publicly available Genomics of Drug Sensitivity in Cancer (GDSC) database. Models were then validated on additional in-vitro data from the Cancer Cell Line Encyclopedia (CCLE), and on clinical samples from The Cancer Genome Atlas (TCGA) and Stand Up to Cancer/Prostate Cancer Foundation West Coast Prostate Cancer Dream Team (WCDT). First, we demonstrated that all TARGETS models successfully predicted treatment response in the separate in-vitro CCLE treatment response dataset. Next, we evaluated all FDA-approved biomarker-based cancer drug indications in TCGA and demonstrated that TARGETS predictions were concordant with established clinical indications. Finally, we performed independent clinical validation in the WCDT and found that the TARGETS AR signaling inhibitors (ARSI) signature successfully predicted clinical treatment response in metastatic castration-resistant prostate cancer with a statistically significant interaction between the TARGETS score and PSA response (p = 0.0252). TARGETS represents a pan-cancer, platform-independent approach to predict response to oncologic therapies and could be used as a tool to better select patients for existing therapies as well as identify new indications for testing in prospective clinical trials.Nicholas R. RydzewskiErik PetersonJoshua M. LangMenggang YuS. Laura ChangMartin SjöströmHamza BakhtiarGefei SongKyle T. HelzerMatthew L. BootsmaWilliam S. ChenRaunak M. ShresthaMeng ZhangDavid A. QuigleyRahul AggarwalEric J. SmallDaniel R. WahlFelix Y. FengShuang G. ZhaoNature PortfolioarticleMedicineRGeneticsQH426-470ENnpj Genomic Medicine, Vol 6, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Genetics
QH426-470
spellingShingle Medicine
R
Genetics
QH426-470
Nicholas R. Rydzewski
Erik Peterson
Joshua M. Lang
Menggang Yu
S. Laura Chang
Martin Sjöström
Hamza Bakhtiar
Gefei Song
Kyle T. Helzer
Matthew L. Bootsma
William S. Chen
Raunak M. Shrestha
Meng Zhang
David A. Quigley
Rahul Aggarwal
Eric J. Small
Daniel R. Wahl
Felix Y. Feng
Shuang G. Zhao
Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures
description Abstract We are now in an era of molecular medicine, where specific DNA alterations can be used to identify patients who will respond to specific drugs. However, there are only a handful of clinically used predictive biomarkers in oncology. Herein, we describe an approach utilizing in vitro DNA and RNA sequencing and drug response data to create TreAtment Response Generalized Elastic-neT Signatures (TARGETS). We trained TARGETS drug response models using Elastic-Net regression in the publicly available Genomics of Drug Sensitivity in Cancer (GDSC) database. Models were then validated on additional in-vitro data from the Cancer Cell Line Encyclopedia (CCLE), and on clinical samples from The Cancer Genome Atlas (TCGA) and Stand Up to Cancer/Prostate Cancer Foundation West Coast Prostate Cancer Dream Team (WCDT). First, we demonstrated that all TARGETS models successfully predicted treatment response in the separate in-vitro CCLE treatment response dataset. Next, we evaluated all FDA-approved biomarker-based cancer drug indications in TCGA and demonstrated that TARGETS predictions were concordant with established clinical indications. Finally, we performed independent clinical validation in the WCDT and found that the TARGETS AR signaling inhibitors (ARSI) signature successfully predicted clinical treatment response in metastatic castration-resistant prostate cancer with a statistically significant interaction between the TARGETS score and PSA response (p = 0.0252). TARGETS represents a pan-cancer, platform-independent approach to predict response to oncologic therapies and could be used as a tool to better select patients for existing therapies as well as identify new indications for testing in prospective clinical trials.
format article
author Nicholas R. Rydzewski
Erik Peterson
Joshua M. Lang
Menggang Yu
S. Laura Chang
Martin Sjöström
Hamza Bakhtiar
Gefei Song
Kyle T. Helzer
Matthew L. Bootsma
William S. Chen
Raunak M. Shrestha
Meng Zhang
David A. Quigley
Rahul Aggarwal
Eric J. Small
Daniel R. Wahl
Felix Y. Feng
Shuang G. Zhao
author_facet Nicholas R. Rydzewski
Erik Peterson
Joshua M. Lang
Menggang Yu
S. Laura Chang
Martin Sjöström
Hamza Bakhtiar
Gefei Song
Kyle T. Helzer
Matthew L. Bootsma
William S. Chen
Raunak M. Shrestha
Meng Zhang
David A. Quigley
Rahul Aggarwal
Eric J. Small
Daniel R. Wahl
Felix Y. Feng
Shuang G. Zhao
author_sort Nicholas R. Rydzewski
title Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures
title_short Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures
title_full Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures
title_fullStr Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures
title_full_unstemmed Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures
title_sort predicting cancer drug targets - treatment response generalized elastic-net signatures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/683460200e2546bd8518fb156fad7efa
work_keys_str_mv AT nicholasrrydzewski predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT erikpeterson predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT joshuamlang predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT menggangyu predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT slaurachang predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT martinsjostrom predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT hamzabakhtiar predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT gefeisong predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT kylethelzer predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT matthewlbootsma predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT williamschen predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT raunakmshrestha predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT mengzhang predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT davidaquigley predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT rahulaggarwal predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT ericjsmall predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT danielrwahl predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT felixyfeng predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
AT shuanggzhao predictingcancerdrugtargetstreatmentresponsegeneralizedelasticnetsignatures
_version_ 1718387511224434688