Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
Proximity-ligation methods like Hi-C map DNA-DNA interactions and reveal its organization into topologically associating domains (TADs). Here the authors describe PSYCHIC, a computational approach for analysing Hi-C data that allows the identification of promoter-enhancer interactions.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/68db1c1c65d14e61bd6b9fb135f785e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:68db1c1c65d14e61bd6b9fb135f785e7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:68db1c1c65d14e61bd6b9fb135f785e72021-12-02T17:06:08ZPromoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains10.1038/s41467-017-02386-32041-1723https://doaj.org/article/68db1c1c65d14e61bd6b9fb135f785e72017-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02386-3https://doaj.org/toc/2041-1723Proximity-ligation methods like Hi-C map DNA-DNA interactions and reveal its organization into topologically associating domains (TADs). Here the authors describe PSYCHIC, a computational approach for analysing Hi-C data that allows the identification of promoter-enhancer interactions.Gil RonYuval GlobersonDror MoranTommy KaplanNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Gil Ron Yuval Globerson Dror Moran Tommy Kaplan Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains |
description |
Proximity-ligation methods like Hi-C map DNA-DNA interactions and reveal its organization into topologically associating domains (TADs). Here the authors describe PSYCHIC, a computational approach for analysing Hi-C data that allows the identification of promoter-enhancer interactions. |
format |
article |
author |
Gil Ron Yuval Globerson Dror Moran Tommy Kaplan |
author_facet |
Gil Ron Yuval Globerson Dror Moran Tommy Kaplan |
author_sort |
Gil Ron |
title |
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains |
title_short |
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains |
title_full |
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains |
title_fullStr |
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains |
title_full_unstemmed |
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains |
title_sort |
promoter-enhancer interactions identified from hi-c data using probabilistic models and hierarchical topological domains |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/68db1c1c65d14e61bd6b9fb135f785e7 |
work_keys_str_mv |
AT gilron promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains AT yuvalgloberson promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains AT drormoran promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains AT tommykaplan promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains |
_version_ |
1718381733720621056 |