Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains

Proximity-ligation methods like Hi-C map DNA-DNA interactions and reveal its organization into topologically associating domains (TADs). Here the authors describe PSYCHIC, a computational approach for analysing Hi-C data that allows the identification of promoter-enhancer interactions.

Guardado en:
Detalles Bibliográficos
Autores principales: Gil Ron, Yuval Globerson, Dror Moran, Tommy Kaplan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/68db1c1c65d14e61bd6b9fb135f785e7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:68db1c1c65d14e61bd6b9fb135f785e7
record_format dspace
spelling oai:doaj.org-article:68db1c1c65d14e61bd6b9fb135f785e72021-12-02T17:06:08ZPromoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains10.1038/s41467-017-02386-32041-1723https://doaj.org/article/68db1c1c65d14e61bd6b9fb135f785e72017-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02386-3https://doaj.org/toc/2041-1723Proximity-ligation methods like Hi-C map DNA-DNA interactions and reveal its organization into topologically associating domains (TADs). Here the authors describe PSYCHIC, a computational approach for analysing Hi-C data that allows the identification of promoter-enhancer interactions.Gil RonYuval GlobersonDror MoranTommy KaplanNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Gil Ron
Yuval Globerson
Dror Moran
Tommy Kaplan
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
description Proximity-ligation methods like Hi-C map DNA-DNA interactions and reveal its organization into topologically associating domains (TADs). Here the authors describe PSYCHIC, a computational approach for analysing Hi-C data that allows the identification of promoter-enhancer interactions.
format article
author Gil Ron
Yuval Globerson
Dror Moran
Tommy Kaplan
author_facet Gil Ron
Yuval Globerson
Dror Moran
Tommy Kaplan
author_sort Gil Ron
title Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
title_short Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
title_full Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
title_fullStr Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
title_full_unstemmed Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
title_sort promoter-enhancer interactions identified from hi-c data using probabilistic models and hierarchical topological domains
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/68db1c1c65d14e61bd6b9fb135f785e7
work_keys_str_mv AT gilron promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains
AT yuvalgloberson promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains
AT drormoran promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains
AT tommykaplan promoterenhancerinteractionsidentifiedfromhicdatausingprobabilisticmodelsandhierarchicaltopologicaldomains
_version_ 1718381733720621056