Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time

The surface Electromyography (sEMG) signal contains information about movement intention generated by the human brain, and it is the most intuitive and common solution to control robots, orthotics, prosthetics and rehabilitation equipment. In recent years, gesture decoding based on sEMG signals has...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Zengyu Qing, Zongxing Lu, Yingjie Cai, Jing Wang
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/68f077a40fa6419187399e1cec853ad9
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!