Selection of higher order regression models in the analysis of multi-factorial transcription data.
<h4>Introduction</h4>Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding....
Enregistré dans:
Auteurs principaux: | Olivia Prazeres da Costa, Arthur Hoffman, Johannes W Rey, Ulrich Mansmann, Thorsten Buch, Achim Tresch |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6a8a645ed2eb47bbbc37454bfa88e351 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Higher-Order Conditioning With Simultaneous and Backward Conditioned Stimulus: Implications for Models of Pavlovian Conditioning
par: Arthur Prével, et autres
Publié: (2021) -
Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates
par: Svetlana N. Khonina, et autres
Publié: (2018) -
Higher-order persons: an ontological challenge?
par: Emanuele Caminada
Publié: (2016) -
Higher-Order Conditioning in the Spatial Domain
par: Youcef Bouchekioua, et autres
Publié: (2021) -
Loss of PRC1 induces higher-order opening of Hox loci independently of transcription during Drosophila embryogenesis
par: Thierry Cheutin, et autres
Publié: (2018)