UMLF-COVID: an unsupervised meta-learning model specifically designed to identify X-ray images of COVID-19 patients
Abstract Background With the rapid spread of COVID-19 worldwide, quick screening for possible COVID-19 patients has become the focus of international researchers. Recently, many deep learning-based Computed Tomography (CT) image/X-ray image fast screening models for potential COVID-19 patients have...
Enregistré dans:
Auteurs principaux: | Rui Miao, Xin Dong, Sheng-Li Xie, Yong Liang, Sio-Long Lo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6a8b4cc1b1f3420184ce1bd214e1a1ed |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Systematic Review on the Use of Artificial Intelligence Techniques in the Diagnosis of COVID-19 from Chest X-Ray Images
par: Mohammad Hosein Sadeghi, et autres
Publié: (2020) -
Feasibility and Efficacy of the Segmental Localization of Lumbar Vertebrae by Ultrasound vs X-ray Examination: A Prospective Comparative Study
par: Bo Yu, MD, Peng Huang, MD, Yukun Luo, MD, Mingbo Zhang, MD
Publié: (2021) -
The role of laboratory medicine specialists in the COVID-19 pandemic
par: Buño Soto Antonio
Publié: (2020) -
COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
par: Shamima Akter, et autres
Publié: (2021) -
Brief update on coronavirus disease 2019 (COVID-19) diagnostics
par: Lippi Giuseppe
Publié: (2020)