Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6aedca7233ad4d39b830fe9c531524db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6aedca7233ad4d39b830fe9c531524db2021-12-02T17:31:20ZModelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization10.1038/ncomms104252041-1723https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db2016-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms10425https://doaj.org/toc/2041-1723Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans.Ruili HuangMenghang XiaSrilatha SakamuruJinghua ZhaoSampada A. ShahaneMatias Attene-RamosTongan ZhaoChristopher P. AustinAnton SimeonovNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-10 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ruili Huang Menghang Xia Srilatha Sakamuru Jinghua Zhao Sampada A. Shahane Matias Attene-Ramos Tongan Zhao Christopher P. Austin Anton Simeonov Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization |
description |
Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans. |
format |
article |
author |
Ruili Huang Menghang Xia Srilatha Sakamuru Jinghua Zhao Sampada A. Shahane Matias Attene-Ramos Tongan Zhao Christopher P. Austin Anton Simeonov |
author_facet |
Ruili Huang Menghang Xia Srilatha Sakamuru Jinghua Zhao Sampada A. Shahane Matias Attene-Ramos Tongan Zhao Christopher P. Austin Anton Simeonov |
author_sort |
Ruili Huang |
title |
Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization |
title_short |
Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization |
title_full |
Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization |
title_fullStr |
Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization |
title_full_unstemmed |
Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization |
title_sort |
modelling the tox21 10 k chemical profiles for in vivo toxicity prediction and mechanism characterization |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db |
work_keys_str_mv |
AT ruilihuang modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT menghangxia modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT srilathasakamuru modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT jinghuazhao modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT sampadaashahane modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT matiasatteneramos modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT tonganzhao modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT christopherpaustin modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization AT antonsimeonov modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization |
_version_ |
1718380617991716864 |