Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans.

Guardado en:
Detalles Bibliográficos
Autores principales: Ruili Huang, Menghang Xia, Srilatha Sakamuru, Jinghua Zhao, Sampada A. Shahane, Matias Attene-Ramos, Tongan Zhao, Christopher P. Austin, Anton Simeonov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6aedca7233ad4d39b830fe9c531524db
record_format dspace
spelling oai:doaj.org-article:6aedca7233ad4d39b830fe9c531524db2021-12-02T17:31:20ZModelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization10.1038/ncomms104252041-1723https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db2016-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms10425https://doaj.org/toc/2041-1723Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans.Ruili HuangMenghang XiaSrilatha SakamuruJinghua ZhaoSampada A. ShahaneMatias Attene-RamosTongan ZhaoChristopher P. AustinAnton SimeonovNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-10 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ruili Huang
Menghang Xia
Srilatha Sakamuru
Jinghua Zhao
Sampada A. Shahane
Matias Attene-Ramos
Tongan Zhao
Christopher P. Austin
Anton Simeonov
Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
description Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans.
format article
author Ruili Huang
Menghang Xia
Srilatha Sakamuru
Jinghua Zhao
Sampada A. Shahane
Matias Attene-Ramos
Tongan Zhao
Christopher P. Austin
Anton Simeonov
author_facet Ruili Huang
Menghang Xia
Srilatha Sakamuru
Jinghua Zhao
Sampada A. Shahane
Matias Attene-Ramos
Tongan Zhao
Christopher P. Austin
Anton Simeonov
author_sort Ruili Huang
title Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
title_short Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
title_full Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
title_fullStr Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
title_full_unstemmed Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
title_sort modelling the tox21 10 k chemical profiles for in vivo toxicity prediction and mechanism characterization
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db
work_keys_str_mv AT ruilihuang modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT menghangxia modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT srilathasakamuru modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT jinghuazhao modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT sampadaashahane modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT matiasatteneramos modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT tonganzhao modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT christopherpaustin modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
AT antonsimeonov modellingthetox2110kchemicalprofilesforinvivotoxicitypredictionandmechanismcharacterization
_version_ 1718380617991716864