Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization
Large-scale in vitro assays may reduce the number of toxicological tests carried out in animals. Here, Huang et al. report a large dataset containing results of in vitrotests of approximately 10,000 chemicals, and use these data to create models that can potentially predict toxicity in humans.
Enregistré dans:
Auteurs principaux: | Ruili Huang, Menghang Xia, Srilatha Sakamuru, Jinghua Zhao, Sampada A. Shahane, Matias Attene-Ramos, Tongan Zhao, Christopher P. Austin, Anton Simeonov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6aedca7233ad4d39b830fe9c531524db |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
par: Hu Zhu, et autres
Publié: (2021) -
ToxId: an efficient algorithm to solve occlusions when tracking multiple animals
par: Alvaro Rodriguez, et autres
Publié: (2017) -
Predicting chemical toxicity effects based on chemical-chemical interactions.
par: Lei Chen, et autres
Publié: (2013) -
Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors
par: Liu K, et autres
Publié: (2013) -
Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling
par: Nicolas Page, et autres
Publié: (2021)