Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting

In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computatio...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Stephan Thaler, Julija Zavadlav
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires