Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computatio...
Enregistré dans:
Auteurs principaux: | Stephan Thaler, Julija Zavadlav |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development of multisensory reweighting is impaired for quiet stance control in children with developmental coordination disorder (DCD).
par: Woei-Nan Bair, et autres
Publié: (2012) -
Order and interactions in DNA arrays: Multiscale molecular dynamics simulation
par: Julija Zavadlav, et autres
Publié: (2017) -
Reweighting a Swedish health questionnaire survey using extensive population register and self-reported data for assessing and improving the validity of longitudinal associations.
par: Anton Nilsson, et autres
Publié: (2021) -
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
par: Saad Zaghlul Saeed Al-Khayyt
Publié: (2017) -
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
par: Saad Zaghlul Saeed Al-Khayyt
Publié: (2013)