Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance

Abstract Mammalian SIRT6 is a well-studied histone deacetylase that was recently shown to exhibit high protein deacylation activity enabling the removal of long chain fatty acyl groups from proteins. SIRT6 was shown to play key roles in cellular homeostasis by regulating a variety of cellular proces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Or Gertman, Dotan Omer, Adi Hendler, Daniel Stein, Lior Onn, Yana Khukhin, Miguel Portillo, Raz Zarivach, Haim Y. Cohen, Debra Toiber, Amir Aharoni
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6ccf7a040ef74caca19da73a1a727ed2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Mammalian SIRT6 is a well-studied histone deacetylase that was recently shown to exhibit high protein deacylation activity enabling the removal of long chain fatty acyl groups from proteins. SIRT6 was shown to play key roles in cellular homeostasis by regulating a variety of cellular processes including DNA repair and glucose metabolism. However, the link between SIRT6 enzymatic activities and its cellular functions is not clear. Here, we utilized a directed enzyme evolution approach to generate SIRT6 mutants with improved deacylation activity. We found that while two mutants show increased deacylation activity at high substrate concentration and improved glucose metabolism they exhibit no improvement and even abolished deacetylation activity on H3K9Ac and H3K56Ac in cells. Our results demonstrate the separation of function between SIRT6 catalytic activities and suggest that SIRT6 deacylation activity in cells is important for glucose metabolism and can be mediated by still unknown acylated cellular proteins.