Data‐Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics‐Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica

Abstract Reliable projections of sea‐level rise depend on accurate representations of how fast‐flowing glaciers slip along their beds. The mechanics of slip are often parameterized as a constitutive relation (or “sliding law”) whose proper form remains uncertain. Here, we present a novel deep learni...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: B. Riel, B. Minchew, T. Bischoff
Format: article
Langue:EN
Publié: American Geophysical Union (AGU) 2021
Sujets:
Accès en ligne:https://doaj.org/article/6cf18a304d24415f8fc32bc86dd9c0a8
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!