Data‐Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics‐Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica
Abstract Reliable projections of sea‐level rise depend on accurate representations of how fast‐flowing glaciers slip along their beds. The mechanics of slip are often parameterized as a constitutive relation (or “sliding law”) whose proper form remains uncertain. Here, we present a novel deep learni...
Guardado en:
Autores principales: | B. Riel, B. Minchew, T. Bischoff |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6cf18a304d24415f8fc32bc86dd9c0a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering
por: C. Mehlmann, et al.
Publicado: (2021) -
Analysis of and Solution to the Polar Numerical Noise Within the Shallow‐Water Model on the Latitude‐Longitude Grid
por: Jianghao Li, et al.
Publicado: (2020) -
Realistic Simulation of Tropical Atmospheric Gravity Waves Using Radar‐Observed Precipitation Rate and Echo Top Height
por: Martina Bramberger, et al.
Publicado: (2020) -
Changes to the Madden‐Julian Oscillation in Coupled and Uncoupled Aquaplanet Simulations With 4xCO2
por: Hien X. Bui, et al.
Publicado: (2020) -
The Role of Isotope‐Enabled GCM Complexity in Simulating Tropical Circulation Changes in High‐CO2 Scenarios
por: Jun Hu, et al.
Publicado: (2020)