Data‐Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics‐Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica
Abstract Reliable projections of sea‐level rise depend on accurate representations of how fast‐flowing glaciers slip along their beds. The mechanics of slip are often parameterized as a constitutive relation (or “sliding law”) whose proper form remains uncertain. Here, we present a novel deep learni...
Enregistré dans:
Auteurs principaux: | B. Riel, B. Minchew, T. Bischoff |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Geophysical Union (AGU)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6cf18a304d24415f8fc32bc86dd9c0a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering
par: C. Mehlmann, et autres
Publié: (2021) -
Analysis of and Solution to the Polar Numerical Noise Within the Shallow‐Water Model on the Latitude‐Longitude Grid
par: Jianghao Li, et autres
Publié: (2020) -
Realistic Simulation of Tropical Atmospheric Gravity Waves Using Radar‐Observed Precipitation Rate and Echo Top Height
par: Martina Bramberger, et autres
Publié: (2020) -
Changes to the Madden‐Julian Oscillation in Coupled and Uncoupled Aquaplanet Simulations With 4xCO2
par: Hien X. Bui, et autres
Publié: (2020) -
The Role of Isotope‐Enabled GCM Complexity in Simulating Tropical Circulation Changes in High‐CO2 Scenarios
par: Jun Hu, et autres
Publié: (2020)