Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog
Abstract Decreasing the partition coefficient (LogP) by the introduction of a hydrophilic group is the conventional approach for improving the aqueous solubility of drug candidates, but is not always effective. Since melting point is related to aqueous solubility, we and other groups have developed...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6da4c61e46e044feab315317688174ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6da4c61e46e044feab315317688174ce |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6da4c61e46e044feab315317688174ce2021-12-02T17:41:32ZImprovement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog10.1038/s41598-021-92028-y2045-2322https://doaj.org/article/6da4c61e46e044feab315317688174ce2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92028-yhttps://doaj.org/toc/2045-2322Abstract Decreasing the partition coefficient (LogP) by the introduction of a hydrophilic group is the conventional approach for improving the aqueous solubility of drug candidates, but is not always effective. Since melting point is related to aqueous solubility, we and other groups have developed alternative strategies to improve solubility by means of chemical modification to weaken intermolecular interaction in the solid state, thereby lowering the melting point and increasing the solubility. Here, we show that converting the symmetrical molecular structure of the clinically used estrogen receptor (ER) antagonist cyclofenil (1) into asymmetrical form by introducing an alkyl group enhances the aqueous solubility. Among the synthesized analogs, the chiral methylated analog (R)-4c shows the highest solubility, being 3.6-fold more soluble than 1 even though its hydrophobicity is increased by the methylation. Furthermore, (R)-4c also showed higher membrane permeability than 1, while retaining a comparable metabolic rate, and equivalent biological activity of the active forms (R)-13a to 2. Further validation of this strategy using lead compounds having symmetric structures is expected.Junki MorimotoKazunori MiyamotoYuki IchikawaMasanobu UchiyamaMakoto MakishimaYuichi HashimotoMinoru IshikawaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Junki Morimoto Kazunori Miyamoto Yuki Ichikawa Masanobu Uchiyama Makoto Makishima Yuichi Hashimoto Minoru Ishikawa Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
description |
Abstract Decreasing the partition coefficient (LogP) by the introduction of a hydrophilic group is the conventional approach for improving the aqueous solubility of drug candidates, but is not always effective. Since melting point is related to aqueous solubility, we and other groups have developed alternative strategies to improve solubility by means of chemical modification to weaken intermolecular interaction in the solid state, thereby lowering the melting point and increasing the solubility. Here, we show that converting the symmetrical molecular structure of the clinically used estrogen receptor (ER) antagonist cyclofenil (1) into asymmetrical form by introducing an alkyl group enhances the aqueous solubility. Among the synthesized analogs, the chiral methylated analog (R)-4c shows the highest solubility, being 3.6-fold more soluble than 1 even though its hydrophobicity is increased by the methylation. Furthermore, (R)-4c also showed higher membrane permeability than 1, while retaining a comparable metabolic rate, and equivalent biological activity of the active forms (R)-13a to 2. Further validation of this strategy using lead compounds having symmetric structures is expected. |
format |
article |
author |
Junki Morimoto Kazunori Miyamoto Yuki Ichikawa Masanobu Uchiyama Makoto Makishima Yuichi Hashimoto Minoru Ishikawa |
author_facet |
Junki Morimoto Kazunori Miyamoto Yuki Ichikawa Masanobu Uchiyama Makoto Makishima Yuichi Hashimoto Minoru Ishikawa |
author_sort |
Junki Morimoto |
title |
Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
title_short |
Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
title_full |
Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
title_fullStr |
Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
title_full_unstemmed |
Improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
title_sort |
improvement in aqueous solubility of achiral symmetric cyclofenil by modification to a chiral asymmetric analog |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6da4c61e46e044feab315317688174ce |
work_keys_str_mv |
AT junkimorimoto improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog AT kazunorimiyamoto improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog AT yukiichikawa improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog AT masanobuuchiyama improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog AT makotomakishima improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog AT yuichihashimoto improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog AT minoruishikawa improvementinaqueoussolubilityofachiralsymmetriccyclofenilbymodificationtoachiralasymmetricanalog |
_version_ |
1718379649475543040 |