DeepTOFSino: A deep learning model for synthesizing full-dose time-of-flight bin sinograms from their corresponding low-dose sinograms
Purpose: Reducing the injected activity and/or the scanning time is a desirable goal to minimize radiation exposure and maximize patients’ comfort. To achieve this goal, we developed a deep neural network (DNN) model for synthesizing full-dose (FD) time-of-flight (TOF) bin sinograms from their corre...
Enregistré dans:
Auteurs principaux: | Amirhossein Sanaat, Hossein Shooli, Sohrab Ferdowsi, Isaac Shiri, Hossein Arabi, Habib Zaidi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6e6aa4f1cd8c46f89f61150479de2fdc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Low-dose high-pitch CT angiography of the supraaortic arteries using sinogram-affirmed iterative reconstruction.
par: Dietrich Beitzke, et autres
Publié: (2014) -
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
par: Yazdan Salimi, et autres
Publié: (2021) -
Statistical Analysis of Weather Parameters for Sustainable Flight Operation in Nigeria
par: Olabode Abiodun Daniel
Publié: (2021) -
Flight schedule adjustment for hub airports using multi-objective optimization
par: Tao Mei, et autres
Publié: (2021) -
Flight Stability of Rigid Wing Airborne Wind Energy Systems
par: Filippo Trevisi, et autres
Publié: (2021)