Predicting self-intercepted medication ordering errors using machine learning.
Current approaches to understanding medication ordering errors rely on relatively small manually captured error samples. These approaches are resource-intensive, do not scale for computerized provider order entry (CPOE) systems, and are likely to miss important risk factors associated with medicatio...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e8d139f7ba04454a0bbe4ad17b15801 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|