Predicting self-intercepted medication ordering errors using machine learning.

Current approaches to understanding medication ordering errors rely on relatively small manually captured error samples. These approaches are resource-intensive, do not scale for computerized provider order entry (CPOE) systems, and are likely to miss important risk factors associated with medicatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher Ryan King, Joanna Abraham, Bradley A Fritz, Zhicheng Cui, William Galanter, Yixin Chen, Thomas Kannampallil
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6e8d139f7ba04454a0bbe4ad17b15801
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares