Predicting self-intercepted medication ordering errors using machine learning.
Current approaches to understanding medication ordering errors rely on relatively small manually captured error samples. These approaches are resource-intensive, do not scale for computerized provider order entry (CPOE) systems, and are likely to miss important risk factors associated with medicatio...
Guardado en:
Autores principales: | Christopher Ryan King, Joanna Abraham, Bradley A Fritz, Zhicheng Cui, William Galanter, Yixin Chen, Thomas Kannampallil |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e8d139f7ba04454a0bbe4ad17b15801 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Motion-in-depth effects on interceptive timing errors in an immersive environment
por: Joan López-Moliner, et al.
Publicado: (2021) -
Drug errors related to self-medication in Morocco
por: Jadda Sara, et al.
Publicado: (2021) -
Noise figure and input intercept point's errors in an AGC‐less microwatt ultrawideband system (limiter and low noise amplifier)
por: Shahab Shahrabadi
Publicado: (2021) -
The Digital Way to Intercept Psoriatic Arthritis
por: Ivan Giovannini, et al.
Publicado: (2021) -
Ontogenetic variation in light interception, self-shading and biomass distribution of seedlings of the conifer Araucaria araucana (Molina) K. Koch
por: LUSK,CHRISTOPHER H, et al.
Publicado: (2006)