Wind Speed Prediction Using Hybrid 1D CNN and BLSTM Network
As the world witnesses population increase, the global power demand is increasing and the need for exploring other alternative clean and self-renewable sources of energy such as wind has become necessary. For optimal operation of the wind farms and stability of the grid, wind prediction ahead of tim...
Enregistré dans:
Auteurs principaux: | Abdulmajid Lawal, Shafiqur Rehman, Luai M. Alhems, Md. Mahbub Alam |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6eb8a4e5698c49dfa79c1623bcb788f7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Short term prediction of wind speed based on long-short term memory networks
par: Salman Umar T., et autres
Publié: (2021) -
Accuracy of wind speed predictability with heights using Recurrent Neural networks
par: Mohandes M., et autres
Publié: (2021) -
Wind Speed Forecasting in Fishing Harbor Anchorage Using a Novel Deep Convolutional Neural Network
par: Caifen He, et autres
Publié: (2021) -
Probability distributions for wind speed volatility characteristics: A case study of Northern Norway
par: Hao Chen, et autres
Publié: (2021) -
Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis
par: Weichao Dong, et autres
Publié: (2021)