The structure of photosystem I from a high-light-tolerant cyanobacteria

Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth’s deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynth...

Full description

Saved in:
Bibliographic Details
Main Authors: Zachary Dobson, Safa Ahad, Jackson Vanlandingham, Hila Toporik, Natalie Vaughn, Michael Vaughn, Dewight Williams, Michael Reppert, Petra Fromme, Yuval Mazor
Format: article
Language:EN
Published: eLife Sciences Publications Ltd 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/6f0a8fe46ec842df9ba2b2f4de6e3c8d
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth’s deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynthetic machinery in cyanobacteria to excessive light stress, we isolated a new strain of cyanobacteria, Cyanobacterium aponinum 0216, from the extreme light environment of the Sonoran Desert. Here we report the biochemical characterization and the 2.7 Å resolution structure of trimeric photosystem I from this high-light-tolerant cyanobacterium. The structure shows a new conformation of the PsaL C-terminus that supports trimer formation of cyanobacterial photosystem I. The spectroscopic analysis of this photosystem I revealed a decrease in far-red absorption, which is attributed to a decrease in the number of long- wavelength chlorophylls. Using these findings, we constructed two chimeric PSIs in Synechocystis sp. PCC 6803 demonstrating how unique structural features in photosynthetic complexes can change spectroscopic properties, allowing organisms to thrive under different environmental stresses.