Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases

Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples.

Guardado en:
Detalles Bibliográficos
Autores principales: Francesco Vallania, Andrew Tam, Shane Lofgren, Steven Schaffert, Tej D. Azad, Erika Bongen, Winston Haynes, Meia Alsup, Michael Alonso, Mark Davis, Edgar Engleman, Purvesh Khatri
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6f12c79a854b4734a673942857dc8a8a
record_format dspace
spelling oai:doaj.org-article:6f12c79a854b4734a673942857dc8a8a2021-12-02T14:40:05ZLeveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases10.1038/s41467-018-07242-62041-1723https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a2018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07242-6https://doaj.org/toc/2041-1723Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples.Francesco VallaniaAndrew TamShane LofgrenSteven SchaffertTej D. AzadErika BongenWinston HaynesMeia AlsupMichael AlonsoMark DavisEdgar EnglemanPurvesh KhatriNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Francesco Vallania
Andrew Tam
Shane Lofgren
Steven Schaffert
Tej D. Azad
Erika Bongen
Winston Haynes
Meia Alsup
Michael Alonso
Mark Davis
Edgar Engleman
Purvesh Khatri
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
description Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples.
format article
author Francesco Vallania
Andrew Tam
Shane Lofgren
Steven Schaffert
Tej D. Azad
Erika Bongen
Winston Haynes
Meia Alsup
Michael Alonso
Mark Davis
Edgar Engleman
Purvesh Khatri
author_facet Francesco Vallania
Andrew Tam
Shane Lofgren
Steven Schaffert
Tej D. Azad
Erika Bongen
Winston Haynes
Meia Alsup
Michael Alonso
Mark Davis
Edgar Engleman
Purvesh Khatri
author_sort Francesco Vallania
title Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
title_short Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
title_full Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
title_fullStr Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
title_full_unstemmed Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
title_sort leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a
work_keys_str_mv AT francescovallania leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT andrewtam leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT shanelofgren leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT stevenschaffert leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT tejdazad leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT erikabongen leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT winstonhaynes leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT meiaalsup leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT michaelalonso leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT markdavis leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT edgarengleman leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
AT purveshkhatri leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases
_version_ 1718390421317484544