Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples.
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6f12c79a854b4734a673942857dc8a8a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6f12c79a854b4734a673942857dc8a8a2021-12-02T14:40:05ZLeveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases10.1038/s41467-018-07242-62041-1723https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a2018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07242-6https://doaj.org/toc/2041-1723Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples.Francesco VallaniaAndrew TamShane LofgrenSteven SchaffertTej D. AzadErika BongenWinston HaynesMeia AlsupMichael AlonsoMark DavisEdgar EnglemanPurvesh KhatriNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Francesco Vallania Andrew Tam Shane Lofgren Steven Schaffert Tej D. Azad Erika Bongen Winston Haynes Meia Alsup Michael Alonso Mark Davis Edgar Engleman Purvesh Khatri Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
description |
Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples. |
format |
article |
author |
Francesco Vallania Andrew Tam Shane Lofgren Steven Schaffert Tej D. Azad Erika Bongen Winston Haynes Meia Alsup Michael Alonso Mark Davis Edgar Engleman Purvesh Khatri |
author_facet |
Francesco Vallania Andrew Tam Shane Lofgren Steven Schaffert Tej D. Azad Erika Bongen Winston Haynes Meia Alsup Michael Alonso Mark Davis Edgar Engleman Purvesh Khatri |
author_sort |
Francesco Vallania |
title |
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
title_short |
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
title_full |
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
title_fullStr |
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
title_full_unstemmed |
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
title_sort |
leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a |
work_keys_str_mv |
AT francescovallania leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT andrewtam leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT shanelofgren leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT stevenschaffert leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT tejdazad leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT erikabongen leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT winstonhaynes leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT meiaalsup leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT michaelalonso leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT markdavis leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT edgarengleman leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases AT purveshkhatri leveragingheterogeneityacrossmultipledatasetsincreasescellmixturedeconvolutionaccuracyandreducesbiologicalandtechnicalbiases |
_version_ |
1718390421317484544 |