Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
Cell type deconvolution from bulk expression data rely on a reference expression matrix. Here, the authors introduce a basis matrix built using data from both healthy and diseased samples profiled on 42 platforms, reducing biases introduced by single-platform matrices built using healthy samples.
Guardado en:
Autores principales: | Francesco Vallania, Andrew Tam, Shane Lofgren, Steven Schaffert, Tej D. Azad, Erika Bongen, Winston Haynes, Meia Alsup, Michael Alonso, Mark Davis, Edgar Engleman, Purvesh Khatri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f12c79a854b4734a673942857dc8a8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations
por: Aurelie Tomczak, et al.
Publicado: (2018) -
Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures
por: Konstantin Zaitsev, et al.
Publicado: (2019) -
Measuring and mitigating PCR bias in microbiota datasets.
por: Justin D Silverman, et al.
Publicado: (2021) -
Author Correction: Scenarios of future Indian electricity demand accounting for space cooling and electric vehicle adoption
por: Marc Barbar, et al.
Publicado: (2021) -
Scenarios of future Indian electricity demand accounting for space cooling and electric vehicle adoption
por: Marc Barbar, et al.
Publicado: (2021)