Learning from crowds in digital pathology using scalable variational Gaussian processes

Abstract The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Miguel López-Pérez, Mohamed Amgad, Pablo Morales-Álvarez, Pablo Ruiz, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/6f4708f23d7141a982a40bf1745ac009
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!