Learning from crowds in digital pathology using scalable variational Gaussian processes
Abstract The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is...
Guardado en:
Autores principales: | Miguel López-Pérez, Mohamed Amgad, Pablo Morales-Álvarez, Pablo Ruiz, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f4708f23d7141a982a40bf1745ac009 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generation of Two Correlated Stationary Gaussian Processes
por: Guo-Qiang Cai, et al.
Publicado: (2021) -
The pitfalls of using Gaussian Process Regression for normative modeling.
por: Bohan Xu, et al.
Publicado: (2021) -
Limited-angle computed tomography with deep image and physics priors
por: Semih Barutcu, et al.
Publicado: (2021) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Chi-Ken Lu, et al.
Publicado: (2021) -
Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning
por: Chi-Ken Lu, et al.
Publicado: (2021)