Learning from crowds in digital pathology using scalable variational Gaussian processes

Abstract The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miguel López-Pérez, Mohamed Amgad, Pablo Morales-Álvarez, Pablo Ruiz, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6f4708f23d7141a982a40bf1745ac009
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares