Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays

To realize the potential of resistive RAM crossbar arrays as platforms for neuromorphic computing, reduced network-level energy consumption must be achieved. Here, the authors use a hardware/software co-design approach to realize reduced energy consumption during network training for the network.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu, Foroozan Koushan, John R. Jameson, Duygu Kuzum
Format: article
Langue:EN
Publié: Nature Portfolio 2018
Sujets:
Q
Accès en ligne:https://doaj.org/article/710e25b6bca046438cd3b187dd5be197
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!