Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays

To realize the potential of resistive RAM crossbar arrays as platforms for neuromorphic computing, reduced network-level energy consumption must be achieved. Here, the authors use a hardware/software co-design approach to realize reduced energy consumption during network training for the network.

Guardado en:
Detalles Bibliográficos
Autores principales: Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu, Foroozan Koushan, John R. Jameson, Duygu Kuzum
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/710e25b6bca046438cd3b187dd5be197
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:710e25b6bca046438cd3b187dd5be197
record_format dspace
spelling oai:doaj.org-article:710e25b6bca046438cd3b187dd5be1972021-12-02T17:33:18ZNeuroinspired unsupervised learning and pruning with subquantum CBRAM arrays10.1038/s41467-018-07682-02041-1723https://doaj.org/article/710e25b6bca046438cd3b187dd5be1972018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07682-0https://doaj.org/toc/2041-1723To realize the potential of resistive RAM crossbar arrays as platforms for neuromorphic computing, reduced network-level energy consumption must be achieved. Here, the authors use a hardware/software co-design approach to realize reduced energy consumption during network training for the network.Yuhan ShiLeon NguyenSangheon OhXin LiuForoozan KoushanJohn R. JamesonDuygu KuzumNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yuhan Shi
Leon Nguyen
Sangheon Oh
Xin Liu
Foroozan Koushan
John R. Jameson
Duygu Kuzum
Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
description To realize the potential of resistive RAM crossbar arrays as platforms for neuromorphic computing, reduced network-level energy consumption must be achieved. Here, the authors use a hardware/software co-design approach to realize reduced energy consumption during network training for the network.
format article
author Yuhan Shi
Leon Nguyen
Sangheon Oh
Xin Liu
Foroozan Koushan
John R. Jameson
Duygu Kuzum
author_facet Yuhan Shi
Leon Nguyen
Sangheon Oh
Xin Liu
Foroozan Koushan
John R. Jameson
Duygu Kuzum
author_sort Yuhan Shi
title Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
title_short Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
title_full Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
title_fullStr Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
title_full_unstemmed Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
title_sort neuroinspired unsupervised learning and pruning with subquantum cbram arrays
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/710e25b6bca046438cd3b187dd5be197
work_keys_str_mv AT yuhanshi neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
AT leonnguyen neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
AT sangheonoh neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
AT xinliu neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
AT foroozankoushan neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
AT johnrjameson neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
AT duygukuzum neuroinspiredunsupervisedlearningandpruningwithsubquantumcbramarrays
_version_ 1718380007346143232