Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor

The fish-hunting marine cone snail Conus geographus uses a specialized venom insulin to induce hypoglycemic shock in its prey. We recently showed that this venom insulin, Con-Ins G1, has unique characteristics relevant to the design of new insulin therapeutics. Here, we show that fish-hunting cone s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter Ahorukomeye, Maria M Disotuar, Joanna Gajewiak, Santhosh Karanth, Maren Watkins, Samuel D Robinson, Paula Flórez Salcedo, Nicholas A Smith, Brian J Smith, Amnon Schlegel, Briony E Forbes, Baldomero Olivera, Danny Hung-Chieh Chou, Helena Safavi-Hemami
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/71443f02920a4c85a8dd87031b11da69
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:71443f02920a4c85a8dd87031b11da69
record_format dspace
spelling oai:doaj.org-article:71443f02920a4c85a8dd87031b11da692021-11-09T16:12:26ZFish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor10.7554/eLife.415742050-084Xe41574https://doaj.org/article/71443f02920a4c85a8dd87031b11da692019-02-01T00:00:00Zhttps://elifesciences.org/articles/41574https://doaj.org/toc/2050-084XThe fish-hunting marine cone snail Conus geographus uses a specialized venom insulin to induce hypoglycemic shock in its prey. We recently showed that this venom insulin, Con-Ins G1, has unique characteristics relevant to the design of new insulin therapeutics. Here, we show that fish-hunting cone snails provide a rich source of minimized ligands of the vertebrate insulin receptor. Insulins from C. geographus, Conus tulipa and Conus kinoshitai exhibit diverse sequences, yet all bind to and activate the human insulin receptor. Molecular dynamics reveal unique modes of action that are distinct from any other insulins known in nature. When tested in zebrafish and mice, venom insulins significantly lower blood glucose in the streptozotocin-induced model of diabetes. Our findings suggest that cone snails have evolved diverse strategies to activate the vertebrate insulin receptor and provide unique insight into the design of novel drugs for the treatment of diabetes.Peter AhorukomeyeMaria M DisotuarJoanna GajewiakSanthosh KaranthMaren WatkinsSamuel D RobinsonPaula Flórez SalcedoNicholas A SmithBrian J SmithAmnon SchlegelBriony E ForbesBaldomero OliveraDanny Hung-Chieh ChouHelena Safavi-HemamieLife Sciences Publications Ltdarticlecone snailvenominsulinhypoglycemic shockprey capturediabetesMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 8 (2019)
institution DOAJ
collection DOAJ
language EN
topic cone snail
venom
insulin
hypoglycemic shock
prey capture
diabetes
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle cone snail
venom
insulin
hypoglycemic shock
prey capture
diabetes
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Peter Ahorukomeye
Maria M Disotuar
Joanna Gajewiak
Santhosh Karanth
Maren Watkins
Samuel D Robinson
Paula Flórez Salcedo
Nicholas A Smith
Brian J Smith
Amnon Schlegel
Briony E Forbes
Baldomero Olivera
Danny Hung-Chieh Chou
Helena Safavi-Hemami
Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
description The fish-hunting marine cone snail Conus geographus uses a specialized venom insulin to induce hypoglycemic shock in its prey. We recently showed that this venom insulin, Con-Ins G1, has unique characteristics relevant to the design of new insulin therapeutics. Here, we show that fish-hunting cone snails provide a rich source of minimized ligands of the vertebrate insulin receptor. Insulins from C. geographus, Conus tulipa and Conus kinoshitai exhibit diverse sequences, yet all bind to and activate the human insulin receptor. Molecular dynamics reveal unique modes of action that are distinct from any other insulins known in nature. When tested in zebrafish and mice, venom insulins significantly lower blood glucose in the streptozotocin-induced model of diabetes. Our findings suggest that cone snails have evolved diverse strategies to activate the vertebrate insulin receptor and provide unique insight into the design of novel drugs for the treatment of diabetes.
format article
author Peter Ahorukomeye
Maria M Disotuar
Joanna Gajewiak
Santhosh Karanth
Maren Watkins
Samuel D Robinson
Paula Flórez Salcedo
Nicholas A Smith
Brian J Smith
Amnon Schlegel
Briony E Forbes
Baldomero Olivera
Danny Hung-Chieh Chou
Helena Safavi-Hemami
author_facet Peter Ahorukomeye
Maria M Disotuar
Joanna Gajewiak
Santhosh Karanth
Maren Watkins
Samuel D Robinson
Paula Flórez Salcedo
Nicholas A Smith
Brian J Smith
Amnon Schlegel
Briony E Forbes
Baldomero Olivera
Danny Hung-Chieh Chou
Helena Safavi-Hemami
author_sort Peter Ahorukomeye
title Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
title_short Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
title_full Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
title_fullStr Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
title_full_unstemmed Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
title_sort fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor
publisher eLife Sciences Publications Ltd
publishDate 2019
url https://doaj.org/article/71443f02920a4c85a8dd87031b11da69
work_keys_str_mv AT peterahorukomeye fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT mariamdisotuar fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT joannagajewiak fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT santhoshkaranth fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT marenwatkins fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT samueldrobinson fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT paulaflorezsalcedo fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT nicholasasmith fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT brianjsmith fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT amnonschlegel fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT brionyeforbes fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT baldomeroolivera fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT dannyhungchiehchou fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
AT helenasafavihemami fishhuntingconesnailvenomsarearichsourceofminimizedligandsofthevertebrateinsulinreceptor
_version_ 1718440937664806912