A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets.
<h4>Purpose</h4>To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics studies are needed. Pooling radiomic features of such data in a statistical analysis is however challenging, as they are sensitive to the variability in scanner models, acquisition...
Enregistré dans:
Auteurs principaux: | Ronrick Da-Ano, François Lucia, Ingrid Masson, Ronan Abgral, Joanne Alfieri, Caroline Rousseau, Augustin Mervoyer, Caroline Reinhold, Olivier Pradier, Ulrike Schick, Dimitris Visvikis, Mathieu Hatt |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/715ee30ce0ed4be28a31be78d0d2b55f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients
par: Vincent Bourbonne, et autres
Publié: (2021) -
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
par: Mahbaneh Eshaghzadeh Torbati, et autres
Publié: (2021) -
Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients
par: Amandine Crombé, et autres
Publié: (2020) -
PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology
par: M. Sollini, et autres
Publié: (2017) -
Diffusion MRI harmonization enables joint-analysis of multicentre data of patients with cerebral small vessel disease
par: Bruno M. de Brito Robalo, et autres
Publié: (2021)