Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M
Fibrosis is a hallmark of several cardiac pathologies and its underlying mechanisms are still poorly defined. Here the authors show that macrophage hypoxia signaling following transverse aortic constriction in mice suppresses the activation of cardiac fibroblasts by secreting oncostatin M.
Saved in:
Main Authors: | Hajime Abe, Norihiko Takeda, Takayuki Isagawa, Hiroaki Semba, Satoshi Nishimura, Masaki Suimye Morioka, Yu Nakagama, Tatsuyuki Sato, Katsura Soma, Katsuhiro Koyama, Masaki Wake, Manami Katoh, Masataka Asagiri, Michael L. Neugent, Jung-whan Kim, Christian Stockmann, Tomo Yonezawa, Ryo Inuzuka, Yasushi Hirota, Koji Maemura, Takeshi Yamashita, Kinya Otsu, Ichiro Manabe, Ryozo Nagai, Issei Komuro |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2019
|
Subjects: | |
Online Access: | https://doaj.org/article/71dda70f0fa943e6abde76eae9ef37b9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity
by: Hiroaki Semba, et al.
Published: (2016) -
WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M
by: Henning P, et al.
Published: (2021) -
Bioactive recombinant human oncostatin M for NMR-based screening in drug discovery
by: Olga A. Mass, et al.
Published: (2021) -
Combined Use of Fecal Biomarkers in Inflammatory Bowel Diseases: Oncostatin M and Calprotectin
by: Cao Y, et al.
Published: (2021) -
Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M
by: Srinath C. Sampath, et al.
Published: (2018)