Different JFET Designs on Conduction and Short-Circuit Capability for 3.3 kV Planar-Gate Silicon Carbide MOSFETs

Both large current capability and strong short-circuit (SC) ruggedness are necessary for 3.3 kV SiC MOSFETs to improve system efficiency and reduce costs in industrial and traction applications. In this paper, the effects of Junction Field Effect Transistor (JFET) region width and JFET doping (JD) o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ximing Chen, Xuan Li, Yafei Wang, Hong Chen, Caineng Zhou, Chao Zhang, Chengzhan Li, Xiaochuan Deng, Yudong Wu, Bo Zang
Formato: article
Lenguaje:EN
Publicado: IEEE 2020
Materias:
Acceso en línea:https://doaj.org/article/71ecac5e3fd54c4b87308cab2710b01c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Both large current capability and strong short-circuit (SC) ruggedness are necessary for 3.3 kV SiC MOSFETs to improve system efficiency and reduce costs in industrial and traction applications. In this paper, the effects of Junction Field Effect Transistor (JFET) region width and JFET doping (JD) on conduction and SC capability of the 3.3 kV planar-gate SiC MOSFETs are systematically investigated by experiments and simulations. When the JFET width (W<sub>JFET</sub>) of device without JD is smaller, the positive temperature coefficient of the special on-resistance (R<sub>on,SP</sub>) is larger. The JD is effective to improve the R<sub>on,SP</sub>, but excessive electric field in gate oxide induced by JD should be paid more attention. The optimization of W<sub>JFET</sub> can be used to improve both R<sub>on,SP</sub> and short circuit withstanding time (SCWT) at the same time. The drain-source current (I<sub>ds</sub>) and SCWT of the optimized devices are 50 A and more than <inline-formula> <tex-math notation="LaTeX">$20~{\mu }\text{s}$ </tex-math></inline-formula>, respectively, which is state-of-the-art for 3.3 kV SiC MOSFETs.